10A should also be red
Just as Dr. Kister said, when black SM has odd number of strandons, there's something wrong.
Now we know, SOMETHING=RED.
error type | corrected | descibtion | example | |
motif not exist | yes | auto fix | 2A, 2X, 2AL, 3C, 3J, 3N, 3AB, 4N, 23E | |
jump caused by missing strand | yes | add' | 1Y, 2S, 2Y,2AM,3P,3Q,11A | |
other | 2L: should delete strand 6 | |||
wrong direction caused by uninverted sheet | yes | 3AB, should be 2F | ||
assign multiple motif number for same motif | 3P, 3Q | |||
combinition of two motif | 11A | |||
error type | corrected | descibtion | example | |
motif not exist | not yet | 2A, 2X, 2AL, 3C | ||
jump caused by missing strand | not yet | 1Y, 2S, 2AM | ||
other | 2L: should delete strand 6 | |||
wrong direction caused by uninverted sheet | 3AB, should be 2F | |||
assign multiple motif number for same motif | 3P, 3Q | |||
combinition of two motif | 11A | |||
=== Run information ===
Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0
Relation: predictstrandon2.txt-weka.filters.unsupervised.attribute.Remove-R12-19,25-weka.filters.unsupervised.attribute.Remove-R1,14-15,17-18-weka.filters.unsupervised.attribute.Remove-R14-weka.filters.unsupervised.attribute.Remove-R9-weka.filters.unsupervised.attribute.Remove-R13
Instances: 61
Attributes: 13
seq
res1
res2
res3
res4
ss
ss1
ss2
ss4
type
type2
typen
intrastrdonn
=== Associator model (full training set) ===
Apriori
=======
Minimum support: 0.75
Minimum metric: 0.9
Number of cycles performed: 5
Generated sets of large itemsets:
Size of set of large itemsets L(1): 4
Size of set of large itemsets L(2): 5
Size of set of large itemsets L(3): 2
Best rules found:
1. intrastrdonn=FALSE 55 ==> ss2=C 55 conf:(1)
2. ss1=C 50 ==> ss2=C 50 conf:(1)
3. ss4=C 49 ==> ss2=C 49 conf:(1)
4. ss4=C intrastrdonn=FALSE 48 ==> ss2=C 48 conf:(1)
5. ss1=C intrastrdonn=FALSE 48 ==> ss2=C 48 conf:(1)
6. ss4=C 49 ==> ss2=C intrastrdonn=FALSE 48 conf:(0.98)
7. ss2=C ss4=C 49 ==> intrastrdonn=FALSE 48 conf:(0.98)
8. ss4=C 49 ==> intrastrdonn=FALSE 48 conf:(0.98)
9. ss1=C 50 ==> ss2=C intrastrdonn=FALSE 48 conf:(0.96)
10. ss1=C ss2=C 50 ==> intrastrdonn=FALSE 48 conf:(0.96)
=== Run information ===
Scheme: weka.classifiers.trees.ADTree -B 10 -E -3
Relation: predictstrandon2.txt-weka.filters.unsupervised.attribute.Remove-R2,7-weka.filters.unsupervised.attribute.Remove-R14-17-weka.filters.unsupervised.attribute.Remove-R16-17-weka.filters.unsupervised.attribute.Remove-R18
Instances: 61
Attributes: 17
pos
res1
res2
res3
res4
score
s1
s3
s3
s4
s5
s6
s7
typen
total
relpos
intrastrandon
Test mode: evaluate on training data
=== Classifier model (full training set) ===
Alternating decision tree:
: -1.04
| (1)s6 < 0.291: -1.434
| (1)s6 >= 0.291: 0.773
| | (3)score < 1.401: -0.731
| | (3)score >= 1.401: 0.706
| | | (5)s3 < 2.062: 1.42
| | | (5)s3 >= 2.062: -0.452
| (2)relpos < 6.5: -0.737
| | (4)res3 = T: 0.427
| | (4)res3 != T: -0.819
| (2)relpos >= 6.5: 0.658
| (6)res1 = A: 0.254
| (6)res1 != A: -0.452
| | (7)pos < 54: 0.146
| | (7)pos >= 54: -0.418
| | | (8)typen = &12: 0.119
| | | (8)typen != &12: -0.378
Legend: -ve = FALSE, +ve = TRUE
Tree size (total number of nodes): 25
Leaves (number of predictor nodes): 17
Time taken to build model: 0.02 seconds
=== Evaluation on training set ===
=== Summary ===
Correctly Classified Instances 61 100 %
Incorrectly Classified Instances 0 0 %
Kappa statistic 1
Mean absolute error 0.0237
Root mean squared error 0.0445
Relative absolute error 12.6362 %
Root relative squared error 14.9366 %
Total Number of Instances 61
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure Class
1 0 1 1 1 FALSE
1 0 1 1 1 TRUE
=== Confusion Matrix ===
a b <-- classified as
55 0 a = FALSE
0 6 b = TRUE